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Abstract

We introduce the general arbitrage-free valuation framework for counterparty risk
adjustments in presence of bilateral default risk, including default of the investor. We
illustrate the symmetry in the valuation and show that the adjustment involves a long
position in a put option plus a short position in a call option, both with zero strike
and written on the residual net value of the contract at the relevant default times.
We allow for correlation between the default times of the investor, counterparty and
underlying portfolio risk factors. We use arbitrage-free stochastic dynamical models.
We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio,
generalizing the work of Brigo and Chourdakis (2008) [10] who deal with unilateral
and asymmetric counterparty risk. We introduce stochastic intensity models and a
trivariate copula function on the default times exponential variables to model default
dependence. Similarly to [10], we find that both default correlation and credit spread
volatilities have a relevant and structured impact on the adjustment. Differently from
[10], the two parties will now agree on the credit valuation adjustment. We study a
case involving British Airways, Lehman Brothers and Royal Dutch Shell, illustrating
the bilateral adjustments in concrete crisis situations.
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1 Introduction

General motivation.

In general, the reason to introduce counterparty risk when evaluating a contract is linked to
the fact that many financial contracts are traded over the counter, so that the credit quality
of the counterparty and of the investor may be important. This has become even more
relevant in recent years as some protection sellers such as mono-line insurers or investment
banks have witnessed increasing default probabilities or even default events, the case of
Lehman Brothers being a clear example.

When investing in default risky assets, one requires a risk premium as a reward for
assuming the default risk. If one thinks, for example, of a corporate bond, it is known that
the yield is higher than the corresponding yield of an equivalent treasury bond, and this
difference is usually called credit spread [12]. The (positive) credit spread implies a lower
price for the bond when compared to default free bonds. Many works have been proposed
recently to explain the term structure of credit spreads, such as [7], [9], [21], [15] and [2], who
also focuses on hedging. This reduction in value is a typical feature: the value of a generic
claim traded with a counterparty subject to default risk is always smaller than the value of
the same claim traded with a counterparty having a null default probability, as was shown
formally for example in [11].

Bilateral risk and symmetry.

This paper introduces a general arbitrage-free valuation framework for bilateral counterparty
default risk. By ‘bilateral’ we intend to point out that the default of the investor is included
into the framework, contrary to earlier works. This brings about symmetry, so that the
price of the position including counterparty risk to the investor is exactly the opposite of
the price of the position to the counterparty. This is clearly not the case if each of the two
parties computes the present value assuming itself to be default-free and allowing for default
of the other party only. This asymmetry would not matter in situations where financial
investors had high credit quality and counterparties rather low one. Indeed, in such a case
both parties would consider the investor as default-free and the counterparty as defaultable,
so that inclusion of the investor default would be pointless, given that it happens in almost
no scenario. However, recent events show that it is no longer realistic to take the credit
quality of the financial institution for granted and to be highly superior to that of a general
counterparty, no matter how prestigious or important the financial institution.

Bilateral risk is also mentioned in the credit risk measurement space by the Basel II
documentation, Annex IV, 2/A: “Unlike a firms exposure to credit risk through a loan,
where the exposure to credit risk is unilateral and only the lending bank faces the risk of
loss, the counterparty credit risk creates a bilateral risk of loss: the market value of the
transaction can be positive or negative to either counterparty to the transaction.”

Basel II is more concerned with Risk Measurement than pricing. For an analysis of
Counterparty risk in the risk measurement space we refer for example to De Prisco and Rosen
(2005) [20], who consider modeling of stochastic credit exposures for derivatives portfolios.
However, also in the valuation space, bilateral features are quite relevant and often can be
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responsible for seemingly paradoxical statements.1 For example, Citigroup in its press release
on the first quarter revenues of 2009 reported a positive mark to market due to its worsened
credit quality: “Revenues also included [...] a net 2.5USD billion positive CVA on derivative
positions, excluding monolines, mainly due to the widening of Citis CDS spreads”. In this
paper we explain precisely how such a situation may origin.

This paper first generalizes to the bilateral symmetric case the asymmetric unilateral
setting proposed in [10], [8], [11] and [13], where only the counterparty is subject to default
risk, while the investor is assumed to be default free. We provide a general formula that
gives the bilateral risk credit valuation adjustment (BR-CVA) for portfolios exchanged be-
tween a default risky investor and a default risky counterparty. Such formula shows that
the adjustment to the investor is the difference between two discounted options terms, a
discounted call option in scenarios of early default time of the counterparty minus a dis-
counted put option in scenarios of early default times of the investor, both options being on
the residual net present value of the portfolio at the relevant default times and having zero
strike. The BR-CVA seen from the point of view of the counterparty is exactly the opposite.
We allow for correlation between default of the investor, default of the counterparty and
underlying portfolio risk factors, and for volatilities and dynamics in the credit spreads and
in the underlying portfolio, all arbitrage free.

Bilateral Counterparty adjustment applied to CDS.

We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio,
generalizing the work of Brigo and Chourdakis [10] who deal with unilateral and asymmetric
counterparty risk for these contracts. Featuring a CDS as underlying, a third default time
enters the picture, namely the default time for the reference credit of the CDS. We therefore
assume that all three entities are subject to default risk and that the default events of
investor, counterparty and reference credit are correlated. We then propose a numerical
methodology to evaluate the resulting BR-CVA formula. We investigate the impact of both
credit spread volatility and default correlation on the credit valuation adjustment. Most of
previous approaches on CDS counterparty risk only focus on unilateral counterparty risk,
moreover ignoring the effect of volatility on the adjustment and mainly focusing on default
correlation.

The few earlier works on CDS with counterparty risk include Leung and Kwok (2005)[24]
who, building on Collin-Dufresne et al. (2002) [16], model default intensities as deterministic
constants with default indicators of other names as feeds. The exponential triggers of the
default times are taken to be independent and default correlation results from the cross feeds,
although again there is no explicit modeling of credit spread volatility. Hull and White [23]
study the counterparty risk problem by resorting to barrier correlated models. Walker (2005)
[30] models CDS counterparty risk using transitions rates as natural means to represent
contagion, but again ignores credit spread volatility. Hille et al. (2006)[22] concentrate on
credit risk measurement for CDS rather than precise valuation under counterparty risk.

The need for explicitly modeling credit spread volatility is even more pronounced if the
underlying reference contract is itself a CDS, as the credit valuation adjustment would involve
CDS options and it is very undesirable to model options without volatility in the underlying

1We are grateful to Dan Rosen for first signaling this issue to us during a conference in June 2009
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asset. This has been clearly shown in [10] for CDS, and in [13] for interest rates payoffs, and
again in [8] for commodities payoffs. Indeed, most credit models in the industry, especially
when applied to Collateralized Debt Obligations or k-th to default baskets, model default
correlation but ignore credit spread volatility. Credit spreads are typically assumed to be
deterministic and a copula is postulated on the exponential triggers of the default times to
model default correlation. This is the opposite of what used to happen with counterparty
risk for interest rate underlyings, for example in Sorensen and Bollier (1994) [28] or Brigo
and Masetti [11] (in Pykhtin (2006)[27]), where correlation was ignored and volatility was
modeled instead. Brigo and Chourdakis (2008) [10] rectify this when addressing CDS’s, but
only deal with unilateral and asymmetric counterparty risk.

Summarizing, we can put this paper’s contribution into context with respect to its analo-
gous earlier versions for unilateral counterparty risk or for other asset classes through Table 1.

Other recent works include Crépey et al (2009)[19] who model wrong way risk for CDS
with counterparty risk using a Markov chain copula model, and Blanchet-Scalliet and Patras
(2008) [3], who resort to older Merton type models. A structural model with jumps has been
introduced by Lipton and Sepp (2009) [25]. In these models assumptions on credit spread
volatility are most time implicit.

Here instead we introduce stochastic intensity models for all three names, including the
investor. We do not introduce correlation between the three intensity processes, but model
default correlation through a trivariate copula function on the exponential triggers of the
default times. This is because typically spread correlation has a much lower impact on
dependence of default times than default correlation. The correlation structure underlying
the trivariate copula function may be estimated by the implied correlation in the quoted
indices tranches markets such as i-Traxx and CDX or calculated from the asset correlation
of the names. We leave this problem for further research. We present a preliminary numerical
investigation to highlight the impact of dynamics parameters on bilateral CVA, followed by
a case study of bilateral risk based on British Airways, Lehman Brothers and Royal Dutch
Shell. We confirm findings in [10] showing that both default correlation and credit spread
volatilities have a relevant and structured impact on the adjustment.

We specify that we do not consider specific collateral clauses or guarantees in the present
work. We assume we are dealing with counterparty risk for an over the counter CDS trans-
action where there is no periodic margining or collateral posting. The aim of this paper is
analyzing the fine structure of counterparty risk adjustments with respect to finely tuned
market dynamics, including the fundamental credit spread volatility ignored in other ap-
proaches, and wrong way risk. We plan to address collateral provisions inclusion in future
work. We already addressed netting in the interest rate context in [13] and [11]. The impact
of credit triggers for the counterparty on CVA are analyzed in Yi (2009) [29]. Assefa et al
(2009) [1] analyze the modeling of collateralization and margining in CVA calculations.

Paper structure.

The rest of the paper is organized as follows. Section 2 gives the general BR-CVA formula
and refers to the appendix for the mathematical proof. Section 3 defines the underlying
framework needed for applying the above methodology to credit default swaps, including
the stochastic intensity model and the trivariate copula function for correlating defaults.
Section 4 develops a numerical method to implement the formula in the case when the un-
derlying contract is a CDS and gives the pseudo code of the algorithm used to run numerical
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Modeling → Underlying Volatility Underlying Vol + Bilateral
Asset Class ↓ No underl/counterp Corr underl/counterp Corr + Vol and Corr

IR swaps (Net) B. Masetti [11] (Net) B. Pallavicini [13] (Net) Brigo Pallavicini
& Papatheodorou [14]

(forthcoming)
IR exotics B. Pallavicini [13] B. P. P. [14]

(forthcoming)
Oil swaps B. Bakkar [8]

CDS B. Chourdakis [10] This paper

Equity B. Masetti [11]

Table 1: Part of earlier analogous literature on CVA valuation with respect to inclusion
of volatilities and correlation and of bilateral features. “Net” denotes papers that consider
netting.

simulations. Section 5 present numerical experiments on different default correlation sce-
narios and changes in credit spread volatility. Section 6 presents a specific application for
computing the mark-to-market value of a CDS contract agreed between British Airways,
Lehman Brothers and Royal Shell. Section 7 concludes the paper.

2 Arbitrage-free valuation of bilateral counterparty risk

We refer to the two names involved in the financial contract and subject to default risk as

investor → name “0”

counterparty → name “2”

In cases where the portfolio exchanged by the two parties is also a default sensitive
instrument, we introduce a third name referring to the reference credit of that portfolio

reference credit → name “1”

If the portfolio is not default sensitive then name “1” can be removed.
We follow [6] and denote by τ0, (τ1) and τ2 respectively the default times of the investor,

(reference credit) and counterparty. We place ourselves in a probability space (Ω,G,Gt,Q).
The filtration Gt models the flow of information of the whole market, including credit and
Q is the risk neutral measure. This space is endowed also with a right-continuous and
complete sub-filtration Ft representing all the observable market quantities but the default
event, thus Ft ⊆ Gt := Ft∨Ht. Here, Ht = σ({τ0 ≤ u}(∨{τ1 ≤ u})∨{τ2 ≤ u} : u ≤ t) is the
right-continuous filtration generated by the default events, either of the investor or of his
counterparty (and of the reference credit if the underlying portfolio is credit sensitive). We
also introduce the notion of stopped filtration. If τ is an Ft stopping time, then the stopped
filtration Fτ is defined as

Fτ = σ(Ft ∪ {t ≤ τ}, t ≥ 0) (2.1)
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If τ is an Gt stopping time, then the stopped filtration Gτ is defined as

Gτ = σ(Gt ∪ {t ≤ τ}, t ≥ 0) (2.2)

Let us call T the final maturity of the payoff which we need to evaluate and let us define
the stopping time

τ = min{τ0, τ2} (2.3)

If τ > T , there is neither default of the investor, nor of his counterparty during the life
of the contract and they both can fulfill the agreements of the contract. On the contrary, if
τ ≤ T then either the investor or his counterparty (or both) defaults. At τ , the Net Present
Value (NPV) of the residual payoff until maturity is computed. We then distinguish two
cases:

• τ = τ2. If the NPV is negative (respectively positive) for the investor (defaulted
counterparty), it is completely paid (received) by the investor (defaulted counterparty)
itself. If the NPV is positive (negative) for the investor (counterparty), only a recovery
fraction REC,2 of the NPV is exchanged.

• τ = τ0. If the NPV is positive (respectively negative) for the defaulted investor (coun-
terparty), it is completely received (paid) by the defaulted investor (counterparty)
itself. If the NPV is negative (positive) for the defaulted investor (counterparty), only
a recovery fraction REC,0 of the NPV is exchanged.

Let us define the following (mutually exclusive and exhaustive) events ordering the default
times

A = {τ0 ≤ τ2 ≤ T} E = {T ≤ τ0 ≤ τ2}
B = {τ0 ≤ T ≤ τ2} F = {T ≤ τ2 ≤ τ0}
C = {τ2 ≤ τ0 ≤ T}
D = {τ2 ≤ T ≤ τ0} (2.4)

Let us call ΠD(t, T ) the discounted payoff of a generic defaultable claim at t and CASHFLOWS(u, s)
the net cash flows of the claim without default between time u and time s, discounted back
at u, all payoffs seen from the point of view of the investor. Then, we have NPV(τi) =
Eτi{CASHFLOWS(τi, T )}, i = 0, 2. Let us denote by D(t, T ) the price of a zero coupon bond
with maturity T . We have

ΠD(t, T ) = 1E∪FCASHFLOWS(t, T )

+1C∪D
[
CASHFLOWS(t, τ2) +D(t, τ2)

(
REC,2 (NPV(τ2))+ − (−NPV(τ2))+)]

+1A∪B
[
CASHFLOWS(t, τ0) +D(t, τ0)

(
(NPV(τ0))+ − REC,0 (−NPV(τ0))+)]

(2.5)

This last expression is the general payoff under bilateral counterparty default risk. Indeed, if
there is no early default, this expression reduces to risk neutral valuation of the payoff (first
term on the right hand side). In case of early default of the counterparty, the payments due
before default occurs are received (second term), and then if the residual net present value
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is positive only the recovery value of the counterparty REC,2 is received (third term), whereas
if it is negative it is paid in full by the investor (fourth term). In case of early default of
the investor, the payments due before default occurs are received (fifth term), and then if
the residual net present value is positive it is paid in full by the counterparty to the investor
(sixth term), whereas if it is negative only the recovery value of the investor REC,0 is paid to
the counterparty (seventh term).

Let us denote by Π(t, T ) the discounted payoff for an equivalent claim with a default-free
counterparty, i.e. Π(t, T ) = CASHFLOWS(t, T ). We then have the following

Proposition 2.1 ([6]). (General bilateral counterparty risk pricing formula). At
valuation time t, and conditional on the event {τ > t}, the price of the payoff under bilateral
counterparty risk is

Et

{
ΠD(t, T )

}
= Et {Π(t, T )}

+Et

{
LGD0 · 1A∪B ·D(t, τ0) · [−NPV(τ0)]+

}
−Et

{
LGD2 · 1C∪D ·D(t, τ2) · [NPV(τ2)]+

}
(2.6)

where LGD = 1 − REC is the Loss Given Default and the recovery fraction REC can be
stochastic and possibly correlated with the default indicator process. It is clear that the value
of a defaultable claim is the value of the corresponding default-free claim plus a long position
in a put option (with zero strike) on the residual NPV giving nonzero contribution only in
scenarios where the investor is the earliest to default (and does so before final maturity)
plus a short position in a call option (with zero strike) on the residual NPV giving nonzero
contribution in scenarios where the counterparty is the earliest to default (and does so before
final maturity),

Proposition 2.1 is stated in [6] without a proof. Here, we provide a mathematical proof in
Appendix A. The adjustment is called bilateral counterparty risk credit valuation adjustment
(BR-CVA) and it may be either positive or negative depending on whether the counterparty
is more or less likely to default than the investor and on the volatilities and correlation. The
mathematical expression is given by

BR-CVA(t, T,LGD0,1,2) = Et

{
LGD2 · 1C∪D ·D(t, τ2) · [NPV(τ2)]+

}
−Et

{
LGD0 · 1A∪B ·D(t, τ0) · [−NPV(τ0)]+

}
(2.7)

where the right hand side in Eq. (2.7) depends on T through the events A,B,C,D and
LGD012 = (LGD0,LGD1,LGD2) is shorthand notation to denote the dependence on the loss
given defaults of the three names.

Remark 2.2. (Symmetry vs Asymmetry). With respect to earlier results on counter-
party risk valuation, Equation (2.7) has the great advantage of being symmetric. This is to
say that if “2” were to compute counterparty risk of her position towards “1”, she would
find exactly −BR-CVA(t, T,LGD0,1,2). However, if each party computed the adjustment by
assuming itself to be default-free and considering only the default of the other party, then the
adjustment calculated by “0” would be

Et

{
LGD2 · 1τ2<T ·D(t, τ2) · [NPV(τ2)]+

}
whereas the adjustment calculated by “2” would be

Et

{
LGD0 · 1τ0<T ·D(t, τ0) · [−NPV(τ0)]+

}
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and they would not be one the opposite of the other. This means that only in the first case
the two parties agree on the value of the counterparty risk adjustment.

Remark 2.3. (Change in sign). Earlier results on counterparty risk valuation, concerned
with a default-free investor and asymmetric, would find an adjustment to be subtracted that
is always positive. However, in our symmetric case even if the initial adjustment is positive
due to

Et

{
LGD2 · 1C∪D ·D(t, τ2) · [NPV(τ2)]+

}
> Et

{
LGD0 · 1A∪B ·D(t, τ0) · [−NPV(τ0)]+

}
the situation may change in time, to the point that the two terms may cancel or that the
adjustment may change sign as the credit quality of “0” deteriorates and that of “2” improves,
so that the inequality changes direction.

Remark 2.4. (Worsening of credit quality and positive mark to market). If the
Investor marks to market her position at a later time using Formula (2.6), we can see that
the term in LGD0 increases, ceteris paribus, if the credit quality of “0” worsens. Indeed, if we
increase the credit spreads of the investor, now τ0 < τ2 will happen more often, giving more
weight to the term in LGD0. This is at the basis of statements like the above one of Citigroup.

3 Application to Credit Default Swaps

In this section we use the formula developed in Section 2 to evaluate the BR-CVA in credit
default swap contracts (CDS). Subsection 3.1 recalls the general formula for CDS evaluation.
Subsection 3.2 introduces the copula models used to correlate the default events. Subsection
3.3 recalls the CIR model used for the stochastic intensity of the three names. Subsection
3.4 applies the general BR-CVA formula to calculate the adjustment for CDS contracts.
We restrict our attention to CDS contract without an upfront trading. However, the pro-
posed methodology is perfectly applicable to the case when the CDS trades with an upfront
premium, which has become the case after the big bang protocol.

3.1 CDS Payoff

We assume deterministic interest rates, which leads to independence between τ1 and D(0, t),
and deterministic recovery rates. Our results hold also true for the case of stochastic rates
independent of default times. The receiver CDS valuation, for a CDS selling protection
LGD1 at time 0 for default of the reference entity between times Ta and Tb in exchange of a
periodic premium rate S1 is given by

CDSa,b(0, S1,LGD1) = S1

[
−
∫ Tb

Ta

D(0, t)(t− Tγ(t)−1)dQ(τ1 > t)

+
b∑

i=a+1

αiD(0, Ti)Q(τ1 > Ti)

]
+LGD1

[∫ Tb

Ta

D(0, t)dQ(τ1 > t)

]
(3.1)

where γ(t) is the first payment period Tj following time t. Let us denote by

NPV(Tj, Tb) := CDSa,b(Tj, S,LGD1) (3.2)
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the residual NPV of a receiver CDS between Ta and Tb evaluated at time Tj, with Ta < Tj <
Tb. Eq. (3.2) can be written similarly to Eq. (3.1), except that now evaluation occurs at
time Tj and has to be conditioned on the information set available to the market at Tj. This
leads to

CDSa,b(Tj, S1,LGD1) = 1τ1>Tj
CDSa,b(Tj, S1, LGD1)

:= 1τ1>Tj

{
S1

[
−
∫ Tb

max{Ta,Tj}
D(Tj, t)(t− Tγ(t)−1)dQ(τ1 > t|GTj

)

+
b∑

i=max{a,j}+1

αiD(Tj, Ti)Q(τ1 > Ti|GTj
)

]

+LGD1

[ ∫ Tb

max{Ta,Tj}
D(Tj, t)dQ(τ1 > t|GTj

)

]}
(3.3)

For conversion of these running CDS into upfront ones, following the so called Big Bang
protocol by ISDA, see for example Beumee, Brigo, Schiemert and Stoyle (2009)[4]. Our
reasoning still applies with obvious modifications to the upfront CDS contract.

3.2 Default Correlation

We consider a reduced form model that is stochastic in the default intensity for the investor,
counterparty and CDS reference credit. The default correlation between the three names is
defined through a dependence structure on the exponential random variables characterizing
the default times of the three names. Such dependence structure is modeled using a trivariate
copula function. Let us denote by λi(t) and Λi(t) =

∫ t
0
λi(s)ds respectively the default

intensity and cumulated intensity of name i evaluated at time t. We recall that i = 0 refers
to the investor, i = 1 refers to the reference credit and i = 2 to the counterparty. We assume
λi to be independent of λj for i 6= j, and assume each of them to be strictly positive almost
everywhere, thus implying that Λi is invertible. We stress the fact that independence of λ’s
across names does not mean that the default event of one name does not change the default
probability or intensity of other names, as discussed in [10], Section 4. We place ourselves
in a Cox process setting, where

τi = Λ−1
i (ξi), i = 0, 1, 2 (3.4)

with ξ0, ξ1 and ξ2 being standard (unit-mean) exponential random variables whose associated
uniforms

Ui = 1− exp{−ξi} (3.5)

are correlated through a Gaussian trivariate copula function

CR(u0, u1, u2) = Q(U0 < u0, U1 < u1, U2 < u2) (3.6)

with R = [ri,j]i,j=0,1,2 being the correlation matrix parameterizing the Gaussian copula. No-
tice that a trivariate Gaussian copula implies bivariate Gaussian marginal copulas. We show
it for the case of the bivariate copula connecting the reference credit and the counterparty,
but the same argument applies to the other bivariate copulas. Let (X1, X2, X3) be a stan-
dard Gaussian vector with correlation matrix R and let ΦR be the distribution function of
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a multivariate Gaussian random variable with correlation matrix R. For any pair of indices
i 6= j, 0 ≤ i, j ≤ 2, we denote by Ri,j the 2 · 2 submatrix formed by the intersection of row i
and row j with column i and column j. We next state, without proof, an obvious result as
a Lemma, which will be later used.

Lemma 3.1. A trivariate Gaussian copula with correlation matrix R induces marginal bi-
variate Gaussian copulas.

We denote by Ci,j(ui, uj) the bivariate copula associated to Ri,j.

3.3 CIR stochastic intensity model

We assume the following stochastic intensity model [7], [9] for the three names

λj(t) = yj(t) + ψj(t;βj), t ≥ 0, j = 0, 1, 2 (3.7)

where ψ is a deterministic function, depending on the parameter vector β (which includes
y0), that is integrable on closed intervals. We assume each yj to be a Cox Ingersoll Ross
(CIR) process [12] given by

dyj(t) = κj(µj − yj(t))dt+ νj

√
yj(t)dZj(t) + JMt,jdMj(t), j = 0, 1, 2 (3.8)

where J ’s are i.i.d. positive jump sizes that are exponentially distributed with mean χj and
Mj are Poisson processes with intensity mj measuring the arrival of jumps in the intensity
λj. The parameter vectors are βj = (κj, µj, νj, yj(0), χj,mj) with each vector component
being a positive deterministic constant. We relax the condition of inaccessibility of the origin
2κjµj > ν2

j so that we do not limit the CDS implied volatility generated by the model. We
assume the Zj’s to be standard Brownian motion processes under the risk neutral measure.
We define the following integrated quantities which will be extensively used in the remainder
of the paper

Λj(t) =

∫ t

0

λj(s)ds, Yj(t) =

∫ t

0

yj(s)ds, Ψj(t;βj) =

∫ t

0

ψj(s;βj)ds (3.9)

In this paper, we focus on intensities without jumps, i.e. mj = 0. Brigo and El-Bachir
[9] consider in detail the tractable model with jumps, and this extension will be applied in
future work.

3.4 Bilateral risk credit valuation adjustment for receiver CDS

We next proceed to the valuation of the BR-CVA adjustment for the case of CDS payoff
given by Eq. (3.1). We state the result as a Proposition.

Proposition 3.2. The BR-CVA at time t for a receiver CDS contract (protection seller)
running from time Ta to time Tb with premium S is given by

BR-CVA-CDSa,b(t, S,LGD0,1,2) = LGD2 · Et

{
1C∪D ·D(t, τ2) ·

[
1τ1>τ2CDSa,b(τ2, S, LGD1)

]+}
−LGD0 · Et

{
1A∪B ·D(t, τ0) ·

[
−1τ1>τ0CDSa,b(τ0, S, LGD1)

]+}
(3.10)
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Proof. We have

Et

{
1C∪D ·D(t, τ2) · [NPV(τ2)]+

}
= Et

{
1C∪D ·D(t, τ2) · [CDSa,b(τ2, S,LGD1)]+

}
= Et

{
1C∪D ·D(t, τ2) ·

[
1τ1>τ2CDSa,b(τ2, S,LGD1)

]+}
(3.11)

where the first equality in Eq. (3.11) follows by definition, while the last equality follows
from Eq. (3.3). Similarly, we have

Et

{
1A∪B ·D(t, τ0) · [−NPV(τ0)]+

}
= Et

{
1A∪B ·D(t, τ0) · [−CDSa,b(τ0, S,LGD1)]+

}
= Et

{
1A∪B ·D(t, τ0) ·

[
−1τ1>τ0CDSa,b(τ0, S,LGD1)

]+}
(3.12)

The proof follows using the expression of BR-CVA which is given by Eq. (2.7).

To summarize, in order to compute the counterparty risk adjustment, we determine the
value of the CDS contract on the reference credit “1” at the point in time τ2 at which the
counterparty “2” defaults. The reference name “1” has survived this point and there is a
bivariate copula C1,2 which connects the default times of the reference credit and of the
counterparty “2”. Similarly, in order to compute the investor risk adjustment, we determine
the value of the CDS contract on the reference credit “1” at the point in time τ0 at which
the counterparty “0” defaults. The reference name “1” has survived this point and there is
a bivariate copula C0,1 which connects the default times of the reference credit and of the
investor “0”. It is clear from Eq. (3.3) and Eq. (2.7) that the only terms we need to know
in order to compute (3.11) and (3.12) are

1C∪D1τ1>τ2Q(τ1 > t|Gτ2) (3.13)

and
1A∪B1τ1>τ0Q(τ1 > t|Gτ0) (3.14)

In the next section, we generalize the numerical method proposed in [10] to calculate
quantities (3.13) and (3.14) for the bilateral counterparty case.

4 Monte-Carlo Evaluation of the BR-CVA adjustment

We propose a numerical method based on Monte-Carlo simulations to calculate the BR-
CVA for the case of CDS contracts. Subsection 4.1 specifies the simulation method used to
generate the sample paths of the CIR process. Subsection 4.2 gives a method to calculate
(3.13), while Subsection 4.3 gives the complete numerical algorithm for calculating the BR-
CVA in (3.10).

4.1 Simulation of CIR process

We use the well known fact [12] that the distribution of y(t) given y(u), for some u < t is,
up to a scale factor, a noncentral chi-square distribution. More precisely, the transition law
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of y(t) given y(u) can be expressed as

y(t) =
ν2(1− e−κ(t−u))

4κ
χ′d

(
4κe−κ(t−u)

ν2(1− e−κ(t−u))
y(u)

)
(4.1)

where

d =
4κµ

ν2
(4.2)

and χ′u(v) denotes a non-central chi-square random variable with u degrees of freedom and
non centrality parameter v. In this way, if we know y(0), we can simulate the process y(t)
exactly on a discrete time grid by sampling from the non-central chi-square distribution.

4.2 Calculation of Survival Probability

We state the result in the form of a proposition. Such result will be used in Subsection 4.3
to develop a numerical algorithm for computing the BR-CVA. Let us define

U i,j = 1− exp(−Λi(τj)) (4.3)

and denote by FΛi(t) the cumulative distribution function of the cumulative (shifted) intensity
of the CIR process associated to name i, which can be retrieved inverting the characteristic
function of the integrated CIR process. We have

Proposition 4.1.

1C∪D1τ1>τ2Q(τ1 > t|Gτ2) =

1τ2≤T1τ2≤τ0

(
1Ā + 1τ2<t1τ1≥τ2

∫ 1

U1,2

FΛ1(t)−Λ1(τ2)(− log(1− u1)− Λ1(τ2))dC1|0,2(u1;U2)

)
(4.4)

where

Ā = {t < τ2 < τ1}

C1|0,2(u1;U2) =

∂C1,2(u1,u2)

∂u2

∣∣∣∣
u2=U2

− ∂C(U0,2,u1,u2)

∂u2

∣∣∣∣
u2=U2

− ∂C1,2(U1,2,u2)

∂u2

∣∣∣∣
u2=U2

+ ∂C(U0,2,U1,2,u2)

∂u2

∣∣∣∣
u2=U2

1− ∂C0,2(U0,2,u2)

∂u2

∣∣∣∣
u2=U2

− ∂C1,2(U1,2,u2)

∂u2

∣∣∣∣
u2=U2

+ ∂C(U0,2,U1,2,u2)

∂u2

∣∣∣∣
u2=U2

(4.5)

Similarly,

Proposition 4.2.

1A∪B1τ1>τ0Q(τ1 > t|Gτ0) =

1τ0≤T1τ0≤τ2

(
1B̄ + 1τ0<t1τ1≥τ0

∫ 1

U1,0

FΛ1(t)−Λ1(τ0)(− log(1− u1)− Λ1(τ0))dC1|2,0(u1;U0)

)
(4.6)
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where

B̄ = {t < τ0 < τ1}

C1|2,0(u1;U0) =

∂C0,1(u0,u1)

∂u0

∣∣∣∣
u0=U0

− ∂C(u0,u1,U2,0)

∂u0

∣∣∣∣
u0=U0

− ∂C0,1(u0,U1,0)

∂u0

∣∣∣∣
u0=U0

+ ∂C(u0,U1,0,U2,0)

∂u0

∣∣∣∣
u0=U0

1− ∂C0,2(u0,U2,0)

∂u0

∣∣∣∣
u0=U0

− ∂C0,1(u0,U1,0)

∂u0

∣∣∣∣
u0=U0

+ ∂C(u0,U1,0,U2,0)

∂u0

∣∣∣∣
u0=U0

(4.7)

The proofs of the propositions are reported in Appendix B.

4.3 The numerical BR-CVA adjustment algorithm

We give the pseudo code of the numerical algorithm used to calculate the BR-CVA for the
CDS payer and receiver. In the pseudo-code below, the variable αi represents the time
elapsing between payment period ti−1 and ti measured in years, the variable ∆ represents
the fineness of the grid used to evaluate the integral of the survival probability in Eq. (4.4)
and the variable δ represents the fineness of the time grid used to evaluate the integral in
Eq. (3.3). The variable xmax represents the maximum x value for which the cumulative
distribution function is implied from the characteristic function. The expression CDF(xk)
corresponds to a subroutine call which calculates the cumulative distribution function of the
integrated CIR process at xk. This can be done by inversion of the characteristic function
of the integrated CIR process using Fourier transform methods such as in [18]. The inputs
to the main procedure Calculate Adjustment are the number N of Monte-Carlo runs
and the market quote S1 of the 5 year CDS spread of the reference entity.

Algorithm 1 [BR-CVA R,BR-CVA P] = Calculate Adjustment (N, S)

for i = 1 : N do
Generate τ0, τ1, and τ2 using Eq. (3.5) and Eq. (3.6).
if τ2 < τ0 and τ2 < Tb then

if τ1 > τ2 then
[BR-CVA R 2, BR-CVA P 2] = CDSAdjust(Tγ(τ2), S, LGD1, 2)
CUM BR-CVA R = CUM BR-CVA R + LGD2· BR-CVA R 2
CUM BR-CVA P = CUM BR-CVA P + LGD2· BR-CVA P 2

end if
end if
if τ0 < τ2 and τ0 < Tb then

if τ1 > τ0 then
[BR-CVA R 0, BR-CVA P 0] = CDSAdjust(Tγ(τ0), S, LGD1, 0)
CUM BR-CVA R = CUM BR-CVA R - LGD0· BR-CVA R 0
CUM BR-CVA P = CUM BR-CVA P - LGD0· BR-CVA P 0

end if
end if

end for
BR-CVA R = CUM BR-CVA R / N
BR-CVA P = CUM BR-CVA P / N
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Algorithm 2 [CDSR, CDSP ] = CDSAdjust(Tj, S, LGD1, index)

Term1 = Term2 = Term3 = 0
tstart = max(Ta, Tj)
Qprev = ComputeProb(tstart, Tj, index)
for t = tstart + δ : δ : Tb do
Qcurr = ComputeProb(t, Tj, index)
Term1 = Term1 +D(Tj, t− δ)(t− δ − Tγ(t−δ)−1)(Qcurr −Qprev)
Term3 = Term3 +D(Tj, t− δ)(Qcurr −Qprev)
Qprev = Qcurr

end for
for ti = tstart + αi : αi : Tb do
Qcurr = ComputeProb(ti, Tj, index)
Term2 = Term2 + αi ·D(Tj, ti) ·Qcurr

end for
CDSval = S · (Term2 − Term1) + LGD1 · Term3

if index == 2 then
CDSR = D(t, Tj) ·max(CDSval, 0)
CDSP = D(t, Tj) ·max(−CDSval, 0)

end if
if index == 0 then
CDSR = D(t, Tj) ·max(−CDSval, 0)
CDSP = D(t, Tj) ·max(CDSval, 0)

end if

Algorithm 3 Qi = ComputeProb(t, Tj, index)

Uindex = 1− exp{−Yindex(Tj)−Ψindex(Tj;βindex)}
Ū1 = 1− exp{−Y1(Tj)−Ψ1(Tj;β1)}
for xk = 0 : ∆ : xmax do
pk = CDF(xk)
uk = 1− exp{−xk −Ψ1(t)}
if index == 2 then

Compute fk = C1|0,2(uk;U2) using Eq. (4.5)
else

Compute fk = C1|2,0(uk;U0) using Eq. (4.7)
end if

end for
Qi =

∑
(uk,pk,fk):uk>Ū1

pk(fk+1 − fk)

5 Numerical Results

We consider an investor (name “0”) trading a five-years CDS contract on a reference name
(name “1”) with a counterparty (name “2”). Both the investor and the counterparty are
subject to default risk. We experiment on different levels of credit risk and credit risk
volatility of the three names, which are specified by the parameters of the CIR processes in
Table 2. We recall that the survival probabilities associated with a CIR intensity process
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Credit Risk Levels y(0) κ µ Credit Risk volatilities ν

low 0.00001 0.9 0.0001 low 0.01
middle 0.01 0.80 0.02 middle 0.2
high 0.03 0.50 0.05 high 0.5

Table 2: The credit risk levels and credit risk volatilities parameterizing the CIR processes

Maturity Low Risk Middle Risk High risk

1y 0 92 234
2y 0 104 244
3y 0 112 248
4y 1 117 250
5y 1 120 251
6y 1 122 252
7y 1 124 253
8y 1 125 253
9y 1 126 254
10y 1 127 254

Table 3: Break-even spreads in basis points generated using the parameters of the CIR
processes in Table 2. The first column is generated using low credit risk and credit risk
volatility. The second column is generated using middle credit risk and credit risk volatility.
The third column is generated using high credit risk and credit risk volatility.

are given by

Q(τi > t) := E[e−Yi(t)]

= PCIR(0, t,βi) (5.1)

where PCIR(0, t,βi) is the price at time 0 of a zero coupon bond maturing at time t under a
stochastic interest rate dynamics given by the CIR process [12], with βi = (yi(0), κi, µi, νi)
being the vector of CIR parameters, i = 0, 1, 2.

We report in Table 3 the break-even spreads zeroing (3.1) in S, with survival probabilities
given by Eq. (5.1) and CIR parameters βlow, βmiddle, βhigh obtained from Table 2.

The evaluation time t and the starting time Ta of the CDS contract are both set to
zero. The end time Tb of the contract is set to five years. It is assumed that payments
are exchanged every three months. The loss given defaults of the low, middle and high
risk entity are respectively set to LGDlow = 0.6, LGDmiddle = 0.65, LGDhigh = 0.7. We
assume that the spreads in Table 3 are the spreads quoted in the markets for the three
names under consideration. We recover the integrated shift Ψ(t;β) which makes the model
survival probabilities consistent with the market survival probabilities coming from Table
3 whenever we change the CIR parameters. In mathematical terms, for any i = 0, 1, 2, we
impose that

Q(τi > t)model := E[e−Λi(t)]

= Q(τi > t)market (5.2)
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The market survival probability for name “i” is bootstrapped from the market CDS quotes
reported in Table 3. Such bootstrap procedure is performed assuming a piecewise linear
hazard rate function. From the definition of the integrated process Ψj(t;βj) given in Eq.
(3.9), we can restate Eq. (5.2) as

Ψi(t;βi) = log

(
E[e−Yi(t)]

Q(τi > t)market

)
= log

(
PCIR(0, t,βi)

Q(τi > t)market

)
(5.3)

where the last equality in Eq. (5.3) follows from Eq. (5.1). We first study a case where
the quoted market spreads of the investor has a low credit risk profile (βlow), the reference
entity has high credit risk profile (βhigh), while the counterparty has middle credit risk
(βmiddle). We vary the correlation between reference credit and counterparty as well as the
credit risk volatility ν1 of the reference credit. Since the focus is mostly on credit spreads
volatility, we calculate the implied CDS volatility produced by the choice of parameters β1 =
(y0(1), µ1, κ1, ν1) for a hypothetical CDS option, maturing in one year and in case of exercise
entering into a four year CDS contract on the underlying reference credit “1”. The objective
of the experiments is to measure the impact of correlation and credit spreads volatility
on the BR-CVA. The triple (x, y, z) represents the correlation of the trivariate Gaussian
copula, with x denoting the correlation between the investor and reference credit, y denoting
the correlation between the investor and the counterparty and z denoting the correlation
between the reference credit and the counterparty. The values BR-CVA P and BR-CVA R
are respectively the Monte-Carlo estimates of the CDS payer and receiver counterparty risk
adjustments. The theoretical formula for payer risk adjustment is given by

LGD2 · Et

{
1C∪D ·D(t, τ2) · [−NPV(τ2)]+

}
−LGD0 · Et

{
1A∪B ·D(t, τ0) · [NPV(τ0)]+

}
(5.4)

which follows from adapting the formula given in Eq. (3.10), given for the receiver counter-
party adjustment, to the case of the payer counterparty adjustment. Tables 4 and 5 report
the results obtained.

The scenarios considered in Table 4 and 5 assume an investor with an extremely low credit
risk profile and thus are similar to those considered in [10], where the investor is assumed
to be default-free. Therefore, it is not surprising that we find similar results. Similarly
to them, we can see that the BR-CVA for the payer investor tends to be monotonically
increasing with the correlation r12, whereas the BR-CVA for the receiver investor appears to
be monotonically decreasing. This is expected since for low and negative correlation values,
defaults of the counterparty come with reductions in default risk of the reference entity, thus
the receiver investor holds an option which is in the money, but at the counterparty default
he only gets a fraction of it proportional to the recovery value of the counterparty. On the
contrary, for high and positive correlation values, defaults of the counterparty come with
increases in default risk of the reference entity, thus the payer investor holds an option which
is in the money, but at the counterparty default he only gets a fraction of it proportional
to the recovery value of the counterparty. While these patterns are intuitive, there is a
particular pattern in correlation that is seemingly counterintuitive.

Remark 5.1. (Decreasing wrong way risk with low credit spread volatility and
high correlation). In general, we expect the BR-CVA for the payer investor to increase with
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(r01, r02, r12) Vol. parameter ν1 0.01 0.10 0.20 0.30 0.40 0.50
CDS Impled vol 1.5% 15% 28% 37% 42% 42%

(0, 0, -0.99) BR-CVA P 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) -0.0(0.0) -0.0(0.0)
BR-CVA R 29.3(1.5) 29.7(1.5) 29.8(1.5) 29.8(1.5) 29.8(1.5) 29.6(1.5)

(0, 0, -0.90) BR-CVA P 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) -0.0(0.0) -0.0(0.0)
BR-CVA R 29.6(1.5) 29.2(1.5) 29.1(1.5) 29.3(1.5) 29.6(1.5) 29.0(1.5)

(0, 0, -0.60) BR-CVA P 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.1(0.0) 0.4(0.2) 0.6(0.2)
BR-CVA R 27.0(1.4) 27.2(1.4) 26.4(1.4) 26.6(1.4) 25.4(1.3) 25.2(1.3)

(0, 0, -0.20) BR-CVA P 0.0(0.0) 0.4(0.1) 1.3(0.2) 2.0(0.3) 2.6(0.4) 3.2(0.5)
BR-CVA R 10.3(0.7) 10.4(0.7) 10.9(0.7) 12.1(0.7) 12.8(0.8) 13.0(0.8)

(0, 0, 0) BR-CVA P 4.8(0.3) 5.1(0.4) 5.4(0.5) 7.4(0.8) 5.9(0.6) 5.6(0.7)
BR-CVA R 0.0(0.0) 0.5(0.1) 2.1(0.2) 3.9(0.3) 5.0(0.3) 6.3(0.4)

(0, 0, 0.20) BR-CVA P 25.9(1.5) 25.1(1.5) 23.2(1.5) 21.1(1.6) 15.9(1.3) 12.8(1.2)
BR-CVA R 0.0(0.0) 0.0(0.0) 0.2(0.0) 0.5(0.1) 0.7(0.1) 1.1(0.1)

(0, 0, 0.60) BR-CVA P 72.0(4.9) 72.0(4.8) 65.2(4.4) 57.1(4.0) 50.8(3.6) 40.4(3.0)
BR-CVA R 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.1(0.0)

(0, 0, 0.90) BR-CVA P 68.4(6.1) 73.8(6.3) 69.2(5.8) 65.2(5.4) 61.5(5.0) 62.2(4.9)
BR-CVA R 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

(0, 0, 0.99) BR-CVA P 13.2(2.8) 28.4(4.0) 39.4(4.4) 51.9(4.9) 54.8(5.0) 67.6(5.4)
BR-CVA R 0.0(0.0) 0.0(0.0) 0.1(0.0) 0.1(0.0) 0.1(0.0) 0.4(0.3)

Table 4: BR-CVA in basis points for the case when y0(0) = 0.0001, κ0 = 0.01, µ0 =
0.001, ν0 = 0.01, y0(2) = 0.01, κ2 = 0.8, µ2 = 0.02, ν2 = 0.2. The name “1” has CIR
parameters y0(1) = 0.03, κ1 = 0.5, µ1 = 0.05, while the credit spreads volatility ν1 is varied
across scenarios. The numbers within round brackets represent the Monte-Carlo standard
error. The CDS contract on the reference credit has a five-years maturity.
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(r01, r02, r12) Vol. parameter ν1 0.01 0.10 0.20 0.30 0.40 0.50
CDS Impled vol 1.5% 15% 28% 37% 42% 42%

(0, 0, -0.99) BR-CVA P 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
BR-CVA R 28.8(1.4) 29.2(1.4) 28.3(1.4) 28.0(1.4) 29.3(1.4) 28.9(1.4)

(0, 0, -0.90) BR-CVA P 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.1(0.0) 0.1(0.0)
BR-CVA R 28.9(1.4) 29.0(1.4) 28.2(1.4) 28.7(1.4) 28.8(1.4) 28.9(1.4)

(0, 0, -0.60) BR-CVA P 0.0(0.0) 0.0(0.0) 0.1(0.1) 0.1(0.0) 0.8(0.2) 0.2(0.1)
BR-CVA R 26.8(1.3) 26.5(1.3) 25.7(1.3) 25.1(1.3) 24.9(1.3) 25.0(1.3)

(0, 0, -0.20) BR-CVA P 0.0(0.0) 0.4(0.1) 1.3(0.2) 2.4(0.4) 2.8(0.5) 2.0(0.4)
BR-CVA R 9.7(0.6) 9.7(0.6) 10.4(0.7) 11.7(0.7) 12.7(0.7) 13.0(0.7)

(0, 0, 0) BR-CVA P 4.8(0.2) 5.3(0.4) 6.0(0.5) 6.6(0.7) 5.2(0.7) 5.1(0.7)
BR-CVA R 0.0(0.0) 0.5(0.1) 2.1(0.2) 3.8(0.3) 5.0(0.3) 6.0(0.3)

(0, 0, 0.20) BR-CVA P 26.6(1.5) 26.1(1.5) 23.6(1.5) 19.7(1.4) 16.7(1.4) 13.8(1.4)
BR-CVA R 0.0(0.0) 0.0(0.0) 0.1(0.0) 0.4(0.0) 0.7(0.1) 1.0(0.1)

(0, 0, 0.60) BR-CVA P 76.4(4.8) 74.1(4.6) 68.1(4.4) 60.8(4.0) 52.2(3.7) 42.3(3.1)
BR-CVA R 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.1(0.0) 0.1(0.0)

(0, 0, 0.90) BR-CVA P 75.3(6.1) 76.1(6.1) 74.4(5.9) 68.8(5.5) 62.2(5.2) 64.4(4.9)
BR-CVA R 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)

(0, 0, 0.99) BR-CVA P 12.6(2.6) 24.9(3.6) 41.3(4.5) 51.8(4.9) 55.3(4.9) 65.9(5.3)
BR-CVA R 0.0(0.0) 0.0(0.0) 0.1(0.0) 0.1(0.0) 0.1(0.0) 0.1(0.0)

Table 5: BR-CVA in basis points for the case when y0(0) = 0.0001, κ0 = 0.01, µ0 =
0.001, ν0 = 0.01, y0(2) = 0.01, κ2 = 0.8, µ2 = 0.02, ν2 = 0.01. The name “1” has CIR
parameters y0(1) = 0.03, κ1 = 0.5, µ1 = 0.05, while the credit spreads volatility ν1 is varied
across scenarios. The numbers within round brackets represent the Monte-Carlo standard
error. The CDS contract on the reference credit has a five-years maturity.



D. Brigo and A. Capponi, Arbitrage free bilateral counterparty risk valuation and application to CDS 19

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

Correlation (r
12

)

A
dj

us
tm

en
ts

 (
bp

s)

Bilataral Risk Counterparty Value Adjustment−Payer Investor

 

 

0.01
0.3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Correlation (r
12

)

A
dj

us
tm

en
t (

bp
s)

Bilataral Risk Counterparty Value Adjustment−Receiver Investor

 

 

0.01
0.3

Figure 1: Patterns of the BR-CVA of the CDS contract for payer and receiver investor and
for low (0.1) and high (0.3) reference credit spreads volatility ν1. We have that ν2 = 0.01
and ν0 = 0.01

correlation between the underlying reference credit and the counterparty default. However,
for correlation increasing beyond relatively large values, the BR-CVA for the payer investor
goes down instead, if the credit spreads volatility of the reference entity is small. Consider,
for example, the case when the reference entity and the counterparty are 99% correlated,
so that the exponential triggers ξ1 and ξ2 are almost identical. If we consider the scenario
where ν1 = ν2 = 0.01, then the intensity of both processes are almost deterministic, with
λ1 > λ2 having the name “1” high credit risk and name “2” middle credit risk. Thus, to
a first approximation τ1 = ξ1

λ1
is higher than τ2 = ξ2

λ2
, and consequently the reference credit

always defaults before the counterparty, resulting in no adjustment. Table 5 has qualitatively
a similar behavior. This is visible also in the right side of the graphs in the upper Figure 1,
where the pattern goes down at the very end for correlations beyond 0.9.

This seemingly counterintuitive feature is improved if credit spread volatility becomes large
(and in line with realistic CDS implied volatilities, see Brigo (2005)[5]). This is evident from
the last column of Table 5, and is due to the increased randomness in the default times, that
now can cross each other in more scenarios.

To further illustrate the transition from large (small) to small (large) adjustments for the
receiver (payer) investor and illustrate the effect of correlation and credit spreads volatility,
we display in Figure 1 the behavior of the bilateral risk adjustment for two different values
of credit spreads volatility.

Tables 6 and 7 report the BR-CVA adjustments for the Payer CDS under a set of five
different riskiness scenarios. The assignments of credit risks in Table 2 to the three names
determine the scenario in place. We have:

• Scenario 1 (Base Scenario). The investor has low credit risk, the reference entity has
high credit risk, and the counterparty has middle credit risk

• Scenario 2 (Risky counterparty). The investor has low credit risk, the reference entity
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(r01, r02, r12) Base Scenario Risky Counterparty Risky Investor Risky Ref Safe Ref
(0, 0, 0) 6.0(0.4) 3.6(0.2) -0.8(0.0) -0.0(0.0) 5.5(0.4)
(0, 0, 0.1) 15.1(0.8) 12.6(0.5) -0.8(0.0) -0.0(0.0) 13.2(1.0)
(0, 0, 0.3) 37.0(2.0) 37.4(1.5) -0.8(0.1) 0.1(0.0) 34.6(2.1)
(0, 0, 0.6) 73.7(4.4) 92.5(3.8) -0.3(0.5) 0.7(0.1) 67.3(4.3)
(0, 0, 0.9) 83.4(6.0) 207.8(8.2) -0.8(0.0) 1.5(0.3) 75.7(5.8)
(0, 0, 0.99) 26.0(3.5) 316.9(12.5) -0.8(0.0) 1.8(0.5) 22.6(3.4)
(0, 0.1, 0) 6.0(0.4) 3.6(0.2) -0.8(0.0) -0.0(0.0) 4.2(0.3)
(0, 0.3, 0) 5.8(0.4) 3.6(0.2) -0.8(0.0) -0.0(0.0) 3.7(0.3)
(0, 0.6, 0) 6.0(0.4) 3.6(0.2) -0.8(0.1) -0.0(0.0) 5.9(0.4)
(0, 0.9, 0) 0.6(4.5) 3.5(0.2) -0.8(0.0) 0.0(0.0) 15.0(1.5)
(0.1, 0, 0) 6.0(0.4) 3.6(0.2) -0.1(0.0) -0.0(0.0) 6.5(0.4)
(0.3, 0, 0) 6.0(0.4) 3.6(0.2) 0.0(0.0) 0.0(0.0) 6.6(0.4)
(0.6, 0, 0) 6.0(0.4) 3.6(0.2) 0.0(0.0) 0.0(0.0) 6.5(0.4)
(0.9, 0, 0) 5.9(0.4) 3.6(0.2) 0.0(0.0) -0.1(0.0) 6.6(0.4)
(0.99, 0, 0) 5.9(0.4) 3.6(0.2) -1.8(0.1) -0.1(0.0) 6.7(0.4)

Table 6: BR-CVA under five different riskiness scenarios. The CIR volatilities are set to
ν0 = ν1 = ν2 = 0.1. The correlation triple has two non-zero entries

(r01, r02, r20) Base Scenario Risky Counterparty Risky Investor Risky Ref Safe Ref
(0.7, 0.4, 0.3) 37.0(2.1) 36.4(1.4) -0.0(0.0) -0.0(0.0) 8.4(0.7)
(0.7, 0.3, 0.4) 49.0(2.8) 51.4(2.1) 0.1(0.1) 0.2(0.0) 25.8(1.7)
(0.4, 0.7, 0.3) 35.3(2.0) 35.5(1.4) 0.1(0.1) 0.1(0.0) 27.0(1.7)
(0.4, 0.3, 0.7) 79.8(5.0) 117.4(4.9) 0.6(0.5) 0.6(0.1) 74.0(4.9)
(0.3, 0.4, 0.7) 80.8(5.1) 117.8(4.9) 0.0(0.0) 0.6(0.1) 73.6(5.5)
(0.3, 0.7, 0.4) 45.8(2.7) 50.0(2.0) 0.0(0.0) 0.4(0.0) 50.9(3.3)
(0.3, 0.3, 0.3) 36.4(2.0) 36.7(1.4) 0.0(0.0) 0.1(0.0) 28.2(1.7)
(0.4, 0.4, 0.4) 47.9(2.8) 50.8(2.1) 0.0(0.0) 0.2(0.0) 39.0(2.4)
(0.7, 0.7, 0.7) 77.4(5.0) 113.6(4.8) 0.0(0.0) 0.6(0.1) 82.5(6.5)

Table 7: BR-CVA under five different riskiness scenarios. The CIR volatilities are set to
ν0 = ν1 = ν2 = 0.1. The correlation triple has all non-zero entries

has middle credit risk, and the counterparty has high credit risk.

• Scenario 3 (Risky investor). The counterparty has low credit risk, the reference entity
has middle credit risk, and the investor has high credit risk.

• Scenario 4 (Risky Ref ). Both investor and counterparty have middle credit risk, while
the reference entity has high credit risk.

• Scenario 5 (Safe Ref ). Both investor and counterparty have high credit risk, while the
reference entity has low credit risk.

Tables 6 and 7 clearly show the effect of the wrong way risk. For example, looking at the
second column, we can see that as the correlation between counterparty and reference entity
gets larger, the BR-CVA increases significantly. This is because (1) the counterparty is the
riskiest name and (2) the high positive correlation makes the spread of the reference entity
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larger at the counterparty default, thus the option on the residual NPV for the payer investor
will be deep into the money and worth more. If the only correlation is between reference
credit and counterparty, then the adjustment is the largest, while when the counterparty is
less correlated with the reference entity, but also positively correlated with the investor (see
second column of Table 7), then the adjustment tends to decrease as the number of scenarios
where the counterparty is the earliest to default is smaller.

The first six rows of Table 6 show how much the BR-CVA adjustment is driven by corre-
lation and credit spreads volatility. When the counterparty and reference entity are loosely
correlated, then the adjustments in Scenario 1 and Scenario 2 are very similar, although the
counterparty is riskier in Scenario 2. However, as the correlation increases, the BR-CVA
adjustment in Scenario 2 becomes significantly larger than the corresponding adjustment in
Scenario 1. Differently from Tables 4 and 5, however, we have that low credit risk volatility
values has the opposite effect and amplify the adjustment; this is because for 99% correla-
tion between reference credit and counterparty, we now have that the counterparty always
defaults earlier being riskier.

Consistently with the results in Table 4 and 5, no BR-CVA takes place in scenario 4.
This is because the reference entity has the highest credit risk profile and since the credit
risk volatilities of the three names are relatively low, the reference entity always defaults
first, thus resulting in no adjustment taking place.

6 Application to a market scenario

We apply the methodology to calculate the mark-to-market price of a five-year CDS contract
between British Airways (counterparty) and Lehman Brothers (investor) on the default of
Royal Dutch Shell (reference credit). We consider two CDS contracts. In the first contract
Lehman Brothers buys 5-year protection on Shell from British Airways on January 5, 2006.
In the second contract, Lehman Brothers sells 5-year protection on Shell to British Airways
on January 5, 2006. In both contracts, British Airways computes the mark-to-market value
of the contract on May 1, 2008. We consider different correlation scenarios among the three
names. The CDS quotes of the three names on those dates are reported in Tables 8 and 9.

Maturity Royal Dutch Shell Lehman Brothers British Airways

1y 4 6.8 10
2y 5.8 10.2 23.2
3y 7.8 14.4 50.6
4y 10.1 18.7 80.2
5y 11.7 23.2 110
6y 15.8 27.3.3 129.5
7y 19.4 30.5 142.8
8y 20.5 33.7 153.6
9y 21 36.5 162.1
10y 21.4 38.6 168.8

Table 8: Market spread quotes in basis points for Royal Dutch Shell, Lehman Brothers and
British Airways on January 5, 2006.
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Maturity Royal Dutch Shell Lehman Brothers British Airways

1y 24 203 151
2y 24.6 188.5 230
3y 26.4 166.75 275
4y 28.5 152.25 305
5y 30 145 335
6y 32.1 136.3 342
7y 33.6 130 347
8y 35.1 125.8 350.6
9y 36.3 122.6 353.3
10y 37.2 120 355.5

Table 9: Market spread quotes in basis points for Royal Dutch Shell, Lehman Brothers and
British Airways on May 1, 2008.

Credit Risk Levels (2006) y(0) κ µ ν

Lehman Brothers (name “0”) 0.0001 0.036 0.0432 0.0553
Royal Dutch Shell (name “1”) 0.0001 0.0394 0.0219 0.0192

British Airways (name “2”) 0.00002 0.0266 0.2582 0.0003

Table 10: The CIR parameters of Lehman Brothers, Royal Dutch Shell and British Airways
calibrated to the market quotes of CDS on January 5, 2006.

The calibrated parameters for the CIR process dynamics on those dates are reported
in Table 10 and Table 11 respectively. The calibration is done assuming zero shift and
inaccessibility of the origin. To have a perfect calibration we should add a shift, but in this
case the quality of fit is relatively good also without shift and this keeps the model simple.
The absolute calibration errors |SCIR

CDS−SMID-MKT
CDS | for the different names at the different dates

range from less than one basis point to a maximum of 20 basis points for BA quotes about
355 basis points and of 23 for Lehman quotes about 188 basis points. These errors can be
zeroed by introducing a shift, but for illustrating the CVA features the lack of shift does not
compromise the analysis.

The procedure used for mark-to-market value valuation is detailed next:

(a) We take the CDS quotes of British Airways, Lehman Brothers and Royal Dutch Shell
on January 5, 2006 and calibrate the parameters of the CIR processes associated to the
three names assuming zero shift and inaccessibility of the origin. The results obtained

Credit Risk Levels (2008) y(0) κ µ ν

Lehman Brothers (name “0”) 0.6611 7.8788 0.0208 0.5722
Royal Dutch Shell (name “1”) 0.003 0.1835 0.0089 0.0057

British Airways (name “2”) 0.00001 0.6773 0.0782 0.2242

Table 11: The CIR parameters of Lehman Brothers, Royal Dutch Shell and British Airways
calibrated to the market quotes of CDS on May 1, 2008.
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from the calibration are the ones reported in Table 10.

(b) We calculate the value of the five year risk-adjusted CDS contract starting at Ta =
January 5, 2006 and ending five years later at Tb = January 5, 2011 as

CDSDa,b(Ta, S1,LGD0,1,2) = CDSa,b(Ta, S1,LGD1)− BR-CVA-CDSa,b(Ta, S1,LGD0,1,2)
(6.1)

where S1 = 120 bps is the five-year spread quote of Royal Dutch Shell at time Ta,
CDSa,b(Ta, S1,LGD1) is the value of the equivalent CDS contract which does not ac-
count for counterparty risk given by Eq. (3.1) and the loss given default of the three
names are taken from a market provider and equal to 0.6.

(c) Let Tc = May 1, 2008, be the time at which British Airways calculates the mark to
market value of the CDS contract. We keep the CIR parameters of British Airways
and Royal Dutch Shell at the same values calibrated in (a). We vary the volatility of
the CIR process associated to Lehman Brothers, while keeping the other parameters
fixed. We take the market CDS quotes of Lehman Brothers, British Airways and Royal
Dutch Shell and recompute the shift process as

Ψi(t;βi) = log

(
E[e−Yi(t) ]

Q(τi > t)market

)
= log

(
PCIR(0, t,βi)

Q(τi > t)market

)
(6.2)

for any Tc < t < Td, where Td = May 1, 2013. Here the market survival probabilities
Q(τi > t)market, are stripped from the CDS quotes of the three names at the date,
May, 1, 2008, using a piece-wise linear hazard rate function. We compute the value
CDSDc,d(Tc, S1,LGD1) of a risk adjusted CDS contract starting at Tc and maturing at
Td, where the five year running spread premium as well as the loss given defaults of
the three parties are the same as in Ta. We have

CDSDc,d(Tc, S1,LGD0,1,2) = CDSc,d(Tc, S1,LGD1)− BR-CVA-CDSc,d(Tc, S1,LGD0,1,2)
(6.3)

where CDSc,d(Tc, S1,LGD1) is the value of the equivalent CDS contract which does not
account for counterparty risk and BR-CVA-CDSc,d(Tc, S1,LGD1) is the adjustment for
the period [Tc, Td] calculated at time Tc.

(d) We calculate the mark-to-market value of the CDS contract as follows:

MTMa,c(S1,LGD0,1,2) = CDSDc,d(Tc, S1,LGD0,1,2)−
CDSDa,b(Ta, S1,LGD0,1,2)

D(Ta, Tc)
(6.4)

Table 12 reports the MTM value of the CDS contract between British Airways and
Lehman Brothers on default of Royal Dutch Shell under a number of correlation scenar-
ios. The CDS contract agreed on January 5, 2006 is marked to market on May, 1, 2008 by
British Airways using the four-step procedure described above. We check the effect of the
increasing riskiness of Lehman Brothers by varying the volatility of the CIR process asso-
ciated to Lehman. Table 12 reveals sensitivity of the BR-CVA to both default correlation
and credit risk volatility of Lehman. We notice the following behavior. If British Airways
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(r01, r02, r12) Vol. parameter ν1 0.01 0.10 0.20 0.30 0.40 0.50
CDS Impled vol 1.5% 15% 28% 37% 42% 42%

(-0.3, -0.3, 0.6) (LEH Pay, BAB Rec) 39.1(2.1) 44.7(2.0) 51.1(1.9) 58.4(1.4) 60.3(1.7) 63.8(1.1)
(BAB Pay, LEH Rec) -84.2(0.0) -83.8(0.1) -83.5(0.1) -83.8(0.1) -83.8(0.2) -83.8(0.2)

(-0.3, -0.3, 0.8) (LEH Pay, BAB Rec) 13.6(3.6) 22.6(3.2) 35.2(2.6) 43.7(2.0) 45.3(2.4) 52.0(1.4)
(BAB Pay, LEH Rec) -84.2(0.0) -83.9(0.1) -83.6(0.1) -83.9(0.1) -83.9(0.2) -83.8(0.2)

(0.6, -0.3, -0.2) (LEH Pay, BAB Rec) 83.1(0.0) 81.9(0.2) 81.6(0.3) 82.4(0.3) 82.6(0.3) 82.8(0.4)
(BAB Pay, LEH Rec) -55.6(1.8) -58.7(1.7) -66.1(1.4) -71.3(1.1) -73.2(1.0) -74.1(0.9)

(0.8, -0.3, -0.3) (LEH Pay, BAB Rec) 83.9(0.0) 82.9(0.1) 82.3(0.3) 82.9(0.2) 82.9(0.3) 83.0(0.3)
(BAB Pay, LEH Rec) -36.4(3.3) -41.9(3.0) -55.9(2.2) -63.4(1.6) -65.8(1.5) -66.4(1.5)

(0, 0, 0.5) (LEH Pay, BAB Rec) 50.6(1.5) 54.3(1.5) 59.2(1.5) 64.4(1.1) 65.5(1.3) 68.8(0.8)
(BAB Pay, LEH Rec) -80.9(0.2) -80.5(0.3) -80.9(0.4) -82.3(0.3) -82.6(0.3) -82.8(0.3)

(0, 0, 0.8) (LEH Pay, BAB Rec) 12.3(3.5) 21.0(3.0) 34.9(2.5) 41.3(2.1) 44.6(1.9) 50.6(1.4)
(BAB Pay, LEH Rec) -80.9(0.2) -81.5(0.2) -81.9(0.3) -81.9(0.4) -82.1(0.4) -82.7(0.3)

(0, 0, 0) (LEH Pay, BAB Rec) 78.1(0.2) 77.9(0.3) 79.5(0.5) 79.5(0.5) 80.1(0.6) 82.1(0.4)
(BAB Pay, LEH Rec) -81.6(0.2) -81.9(0.2) -82.3(0.3) -82.2(0.4) -82.7(0.3) -83.2(0.3)

(0, 0.7, 0) (LEH Pay, BAB Rec) 77.3(0.3) 77.3(0.4) 78.5(0.5) 79.2(0.5) 79.7(0.6) 81.5(0.4)
(BAB Pay, LEH Rec) -81.2(0.2) -81.8(0.2) -81.9(0.3) -80.8(1.3) -82.4(0.3) -82.6(0.3)

(0.3, 0.2, 0.6) (LEH Pay, BAB Rec) 54.1(1.4) 56.7(1.3) 62.5(1.1) 63.6(1.1) 66.4(0.9) 69.7(0.6)
(BAB Pay, LEH Rec) -81.3(0.2) -81.7(0.2) -81.4(0.4) -81.3(0.5) -81.6(0.4) -82.1(0.4)

(0.3, 0.3, 0.8) (LEH Pay, BAB Rec) 22.8(4.2) 28.8(3.5) 38.6(2.9) 42.6(2.9) 45.9(2.5) 52.0(2.2)
(BAB Pay, LEH Rec) -83.0(0.2) -83.2(0.2) -82.8(0.3) -82.4(0.4) -82.5(0.4) -82.9(0.4)

(0.5, 0.5, 0.5) (LEH Pay, BAB Rec) 62.8(0.8) 64.5(0.8) 67.7(0.8) 68.5(0.9) 71.3(0.7) 73.2(0.6)
(BAB Pay, LEH Rec) -67.4(1.1) -70.4(0.9) -72.9(0.9) -74.4(0.9) -75.8(0.8) -76.7(0.7)

(0.7, 0, 0) (LEH Pay, BAB Rec) 77.4(0.2) 77.3(0.3) 78.9(0.5) 79.1(0.5) 79.9(0.5) 81.4(0.4)
(BAB Pay, LEH Rec) -47.3(2.2) -55.0(1.9) -61.6(1.6) -65.0(1.5) -67.5(1.3) -69.6(1.1)

Table 12: Value of the CDS contract between British Airways and Lehman Brothers on
default of Royal Dutch Shell agreed on January 5, 2006 and marked to market by Lehman
Brothers on May 1, 2008. The pairs (LEH Pay, BAB Rec) and (BAB Pay, LEH Rec) denote
respectively the mark-to-market value when Lehman Brothers is the CDS receiver and CDS
payer. The mark-to-market value of the CDS contract without risk adjustment when Lehman
Brothers is respectively payer (receiver) is 84.2(-84.2) bps, due to the widening of the CDS
spread curve of Royal Dutch Shell.

is negatively correlated or uncorrelated with Royal Dutch Shell, see triples (0.6,−0.3,−0.2),
(0.8,−0.3,−0.3), and (0.7, 0, 0), then the mark-to-market value of the risk adjusted CDS
contract appears to be the largest for Lehman (this is true both if Lehman is the CDS payer
and the CDS receiver). The adjustments are quite sensitive to the credit spreads volatility
of Royal Dutch Shell. In particular, it appears from Table 12 that increases in credit spreads
volatility of Shell increase the mark-to-market valuation of the CDS contract when Lehman
is the CDS payer and decrease the contract valuation when Lehman is the CDS receiver.
This is the case because larger credit spreads volatility increases the number of scenarios
where the counterparty British Airways precedes Shell in defaulting. When Lehman is the
CDS payer, this translates in larger CDS contract valuation for Lehman, as the negative
adjustment done at the counterparty default time if the option on the residual net present
value is in the money (and this is the case as the default intensity of Shell in 2008 has
increased) does not take place. Conversely, when Lehman is the CDS receiver, this implies
smaller CDS contract valuations for Lehman due to a symmetric reasoning.

We next invert the role of Lehman Brothers and Royal Dutch Shell, hence Royal Dutch
Shell becomes the investor and Lehman Brothers the reference entity.

We consider the following two CDS contracts. In the first contract Royal Dutch Shell
buys 5-year protection on Lehman from British Airways on January 5, 2006. In the second
contract, Royal Dutch Shell sells 5-year protection on Lehman to British Airways on January
5, 2006. As in the earlier case, British Airways computes the mark-to-market value of the
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two CDS contracts on May 1, 2008.
The results are reported in Table 13.

(r01, r02, r12) Vol. parameter ν1 0.01 0.10 0.20 0.30 0.40 0.40
CDS Impled vol 1.5% 15% 28% 37% 42% 42%

(-0.3, -0.3, 0.6) (BAB Pay, RDSPLC Rec) 513.0(1.9) 512.4(1.9) 512.8(1.9) 512.7(1.9) 513.4(1.9) 514.0(1.8)
(RDSPLC Pay, BAB Rec) -520.0(0.2) -520.0(0.2) -520.0(0.2) -520.0(0.2) -520.0(0.2) -520.1(0.2)

(-0.3, -0.3, 0.8) (BAB Pay, RDSPLC Rec) 511.1(2.3) 511.1(2.4) 511.4(2.3) 511.3(2.3) 511.9(2.3) 513.0(2.2)
(RDSPLC Pay, BAB Rec) -520.0(0.2) -520.0(0.2) -520.0(0.2) -520.0(0.2) -520.0(0.2) -520.1(0.2)

(0.6, -0.3, -0.2) (BAB Pay, RDSPLC Rec) 525.9(0.1) 525.9(0.1) 525.9(0.1) 525.9(0.1) 525.9(0.1) 525.8(0.1)
(RDSPLC Pay, BAB Rec) -442.2(3.6) -442.7(3.5) -442.6(3.5) -442.6(3.5) -442.3(3.5) -441.2(3.6)

(0.8, -0.3, -0.3) (BAB Pay, RDSPLC Rec) 526.5(0.0) 526.5(0.0) 526.5(0.0) 526.5(0.0) 526.5(0.0) 526.5(0.0)
(RDSPLC Pay, BAB Rec) -405.1(5.2) -405.3(5.2) -403.3(5.3) -405.4(5.2) -407.6(5.1) -403.9(5.3)

(0, 0, 0.5) (BAB Pay, RDSPLC Rec) 516.0(1.4) 515.7(1.4) 515.5(1.5) 516.3(1.3) 515.6(1.5) 516.7(1.3)
(RDSPLC Pay, BAB Rec) -503.7(0.8) -503.7(0.8) -503.7(0.8) -503.6(0.8) -503.8(0.8) -503.9(0.8)

(0, 0, 0.8) (BAB Pay, RDSPLC Rec) 511.6(2.4) 511.5(2.4) 512.1(2.2) 512.1(2.2) 505.7(7.1) 512.6(2.2)
(RDSPLC Pay, BAB Rec) -503.7(0.8) -503.7(0.8) -503.7(0.8) -507.5(4.0) -503.7(0.8) -503.9(0.8)

(0, 0, 0) (BAB Pay, RDSPLC Rec) 524.2(0.3) 524.2(0.3) 524.1(0.3) 524.2(0.3) 524.2(0.3) 524.2(0.3)
(RDSPLC Pay, BAB Rec) -504.2(0.8) -504.1(0.8) -504.2(0.8) -504.0(0.8) -504.2(0.8) -504.3(0.8)

(0, 0.7, 0) (BAB Pay, RDSPLC Rec) 524.8(0.3) 524.7(0.4) 524.8(0.3) 524.7(0.3) 524.7(0.3) 524.8(0.3)
(RDSPLC Pay, BAB Rec) -504.3(0.8) -504.3(0.8) -504.4(0.8) -504.2(0.8) -504.4(0.8) -504.5(0.8)

(0.3, 0.2, 0.6) (BAB Pay, RDSPLC Rec) 516.6(1.5) 517.0(1.5) 516.6(1.5) 517.3(1.4) 517.1(1.5) 517.2(1.4)
(RDSPLC Pay, BAB Rec) -484.3(1.7) -484.4(1.7) -484.3(1.7) -484.4(1.6) -484.5(1.6) -484.3(1.7)

(0.3, 0.3, 0.8) (BAB Pay, RDSPLC Rec) 507.4(5.5) 505.6(5.7) 508.9(4.5) 508.1(3.5) 502.6(7.7) 497.5(14.2)
(RDSPLC Pay, BAB Rec) -487.0(6.0) -484.5(1.7) -490.6(4.9) -492.7(9.4) -487.1(2.7) -488.3(3.3)

(0.5, 0.5, 0.5) (BAB Pay, RDSPLC Rec) 519.6(1.1) 519.6(1.1) 519.1(1.2) 519.7(1.1) 519.7(1.1) 519.4(1.1)
(RDSPLC Pay, BAB Rec) -460.2(2.8) -460.2(2.8) -459.6(2.8) -460.1(2.8) -459.4(2.8) -458.1(2.8)

(0.7, 0, 0) (BAB Pay, RDSPLC Rec) 523.8(0.3) 523.8(0.3) 523.7(0.3) 523.8(0.3) 523.8(0.3) 523.9(0.3)
(RDSPLC Pay, BAB Rec) -426.3(4.3) -426.0(4.3) -426.5(4.3) -427.5(4.2) -428.8(4.2) -424.4(4.4)

Table 13: Value of the CDS contract between British Airways and Royal Dutch Shell on
default of Lehman Brothers agreed on January 5, 2006 and marked to market by British
Airways on May 1, 2008. The pairs (RDSPLC Pay, BAB Rec) and (BAB Pay, RDSPLC
Rec) denote respectively the mark-to-market value when British Airways is the CDS receiver
and CDS payer. The mark-to-market value of the CDS contract without risk adjustment
when British Airways is respectively payer (receiver) is 529(-529) bps, due to the widening
of the CDS spread curve of Lehman Brothers.

The risk-adjusted mark-to-market value of the CDS contract is sensitive to correlation
and it follows a pattern similar to the one discussed earlier for the other CDS contract. How-
ever, differently from the previous case, there is less sensitivity to credit spreads volatility. As
the default intensity of Lehman on May 1 2008 is already high, we have that increases in its
credit spreads volatility does not vary significantly the number of scenarios where Lehman is
the first to default. Therefore, the risk-adjusted mark-to-market value of the CDS contract
does not depend much on credit spreads volatility in this case.

7 Conclusions

We have provided a general framework for calculating the bilateral counterparty credit val-
uation adjustment (BR-CVA) for payoffs exchanged between two parties, an investor and
her counterparty. We have then specialized our analysis to the case where also the under-
lying portfolio is sensitive to a third credit event, and in particular to the case where the
underlying portfolio is a credit default swap on a third entity. We have then developed a
Monte-Carlo numerical scheme to evaluate the formula and thus compute the BR-CVA in
the specific case of credit default swap contracts. We have provided a case study in Section
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5, and experimented with different levels of credit risk and credit risk volatilities of the three
names as well as with different scenarios of default correlation. The results obtained confirm
that the adjustment is sensitive to both default correlation and credit spreads volatility,
having richly structured patterns that cannot be captured by rough multipliers. This points
out that attempting to adapting the capital adequacy methodology (Basel II) to evaluating
wrong way risk by means of rough multipliers is not feasible. Our analysis confirms that also
in the bilateral-symmetric case, wrong way risk - namely the supplementary risk that one
undergoes when the correlation assumes the worst possible value - has a structured pattern
that cannot be captured by simple multipliers applied to the zero correlation case.
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A Proof of the general counterparty risk pricing for-

mula

We next prove the proposition.

Proof. We have that

Π(t, T ) = CASHFLOWS(t, T )

= 1A∪BCASHFLOWS(t, T ) + 1C∪DCASHFLOWS(t, T ) + 1E∪FCASHFLOWS(t, T ) (A.1)

since the events in Eq. (2.4) form a complete set. From the linearity of the expectation, we
can rewrite the right hand side of Eq. (2.6) as

Et{Π(t, T )+LGD0 ·1A∪B ·D(t, τ0)·[−NPV(τ0)]+−LGD2 ·1C∪D ·D(t, τ2)·[NPV(τ2)]+} (A.2)

We can then rewrite the formula in Eq. (A.2) using Eq. A.1 as

= Et[1A∪BCASHFLOWS(t, T ) + (1− REC,0)1A∪BD(t, τ0)[−NPV (τ0)]+

+1C∪DCASHFLOWS(t, T ) + (REC,2− 1)1C∪DD(t, τ2)[NPV (τ2)]+

+1E∪FCASHFLOWS(t, T )]

= Et[1A∪BCASHFLOWS(t, T ) + (1− REC,0)1A∪BD(t, τ0)[−NPV (τ0)]+]

+Et[1C∪DCASHFLOWS(t, T ) + (REC,2− 1)1C∪DD(t, τ2)[NPV (τ2)]+]

+Et[1E∪FCASHFLOWS(t, T )] (A.3)

We next develop each of the three expectations in the equality of Eq. (A.3).
The expression inside the first expectation can be rewritten as

1A∪BCASHFLOWS(t, T ) + (1− REC,0)1A∪BD(t, τ0)[−NPV (τ0)]+

= 1A∪BCASHFLOWS(t, T ) + 1A∪BD(t, τ0)[−NPV (τ0)]+ − REC,01A∪BD(t, τ0)[−NPV (τ0)]+

(A.4)
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Conditional on the information at τ0, the expectation of the expression in Eq. (A.4) is equal
to

Eτ0

[
1A∪BCASHFLOWS(t, T ) + 1A∪BD(t, τ0) (−NPV (τ0))+ − REC,01A∪BD(t, τ0)[−NPV (τ0)]+

]
= Eτ0 [1A∪B[CASHFLOWS(t, τ0) +D(t, τ0)CASHFLOWS(τ0, T ) +D(t, τ0) (−Eτ0 [CASHFLOWS(τ0, T )])+

−REC,0D(t, τ0)[−NPV (τ0)]+]]

= 1A∪B[CASHFLOWS(t, τ0) +D(t, τ0)Eτ0 [CASHFLOWS(τ0, T )] +D(t, τ0) (−Eτ0 [CASHFLOWS(τ0, T )])+

−REC,0D(t, τ0)[−NPV (τ0)]+]

= 1A∪B[CASHFLOWS(t, τ0) +D(t, τ0) (Eτ0 [CASHFLOWS(τ0, T )])+ − REC,0D(t, τ0)[−NPV (τ0)]+]

= 1A∪B[CASHFLOWS(t, τ0) +D(t, τ0) (NPV (τ0))+ − REC,0D(t, τ0)[−NPV (τ0)]+]

where the first equality in Eq. (A.5) follows because

1A∪BCASHFLOWS(t, T ) = 1A∪B[CASHFLOWS(t, τ0) +D(t, τ0)CASHFLOWS(τ0, T )] (A.5)

being the default time τ0 always smaller than T under the event A ∪ B. Conditioning the
obtained result on the information available at t, and using the fact that Et[Eτ0 [.]] = Et[.]
due to t < τ0, we obtain that the first term in Eq. (A.3) is given by

Et

[
1A∪B

[
CASHFLOWS(t, τ0) +D(t, τ0)(NPV (τ0))+ − REC,0D(t, τ0)(−NPV (τ0))+

]]
(A.6)

which coincides with the expectation of the third term in Eq. (2.5).
We next repeat a similar argument for the second expectation in Eq. (A.3). We have

1C∪DCASHFLOWS(t, T ) + (REC,2− 1)1C∪DD(t, τ2)[NPV (τ2)]+

= 1C∪DCASHFLOWS(t, T )− 1C∪DD(t, τ2)[NPV (τ2)]+ + REC,21C∪DD(t, τ2)[NPV (τ2)]+

(A.7)

Conditional on the information available at time τ2, we have

Eτ2

[
1C∪DCASHFLOWS(t, T )− 1C∪DD(t, τ2) (NPV (τ2))+ REC,21C∪DD(t, τ2)[NPV (τ2)]+

]
= Eτ2 [1C∪D[CASHFLOWS(t, τ2) +D(t, τ2)CASHFLOWS(τ2, T )−D(t, τ2) (Eτ2 [CASHFLOWS(τ2, T )])+

+REC,2D(t, τ2)[NPV (τ2)]+]]

= 1C∪D[CASHFLOWS(t, τ2) +D(t, τ2)Eτ2 [CASHFLOWS(τ2, T )]−D(t, τ2) (Eτ2 [CASHFLOWS(τ2, T )])+

+REC,2D(t, τ2)[NPV (τ2)]+]

= 1C∪D
[
CASHFLOWS(t, τ2)−D(t, τ2) (Eτ2 [−CASHFLOWS(τ2, T )])+ + REC,2D(t, τ2)[NPV (τ2)]+

]
= 1C∪D

[
CASHFLOWS(t, τ2)−D(t, τ2)(−NPV (τ2))+ + REC,2D(t, τ2)[NPV (τ2)]+

]
(A.8)

where the first equality follows because

1C∪DCASHFLOWS(t, T ) = 1C∪D[CASHFLOWS(t, τ2) +D(t, τ2)CASHFLOWS(τ2, T )] (A.9)

being the default time τ2 always smaller than T under the event C ∪ D. Conditioning the
obtained result on the information available at t < τ2, we obtain that the second term in
Eq. (A.3) is given by

Et

[
1C∪D

[
CASHFLOWS(t, τ2) +D(t, τ2)REC,2(NPV (τ2))+ −D(t, τ2)(−NPV (τ2))+

]]
(A.10)
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which coincides exactly with the expectation of the second term in Eq. (2.5).
The third expectation in Eq. (A.3) coincides with the first term in Eq. (2.5), therefore

their expectations ought to be the same. Since we have proven that the expectation of each
term in Eq. (2.5) equals the expectation of the corresponding term in Eq. (A.3), the desired
result is obtained.

B Proof of the survival probability formula

Proof. We have

1C∪D1τ1>τ2Q(τ1 > t|Gτ2)
= 1τ2≤T1τ2≤τ0 (1t<τ2<τ1 + 1τ2<t1τ1≥τ2E[Q(Λ1(t) < ξ1|Gτ2 , ξ1)|Gτ2 ])
= 1τ2≤T1τ2≤τ01Ā + E[1τ2<t1τ1≥τ21τ0≥τ2Q(Λ1(t) < ξ1|Gτ2 , ξ1)|Gτ2 ]
= 1τ2≤T1τ2≤τ0

(
1Ā + 1τ2<t1τ1≥τ2E[FΛ1(t)−Λ1(τ2)(ξ1 − Λ1(τ2))|Gτ2 , {τ1 > τ2}, {τ0 > τ2}]

)
(B.1)

The last step follows from the fact that the Λ1(t) < ξ1 is the same as Λ1(t) − Λ1(τ2) <
ξ1−Λ1(τ2) and the right hand side ξ1−Λ1(τ2) becomes known once we condition on ξ1 and
Gτ2 . Here, by FΛ1(t)−Λ1(τ2), we indicate the cumulative distribution function of the integrated
(shifted) CIR process Λ1(t)−Λ1(τ2). Let us denote U i,j = 1−exp(−Λi(τj)), where 0 ≤ i, j ≤ 3
denote the three names under consideration. Since ξ1 = − log(1− U1) and τ1 = Λ−1

1 (ξ1), we
can rewrite the inner term in Eq. (B.1) as

1Ā + 1τ2<t1τ1≥τ2E[FΛ1(t)−Λ1(τ2)(− log(1− U1)− Λ1(τ2))|Gτ2 , {ξ1 > Λ1(τ2)}, {ξ0 > Λ0(τ2)}]
= 1Ā + 1τ2<t1τ1≥τ2E[FΛ1(t)−Λ1(τ2)(− log(1− U1)− Λ1(τ2))|Gτ2 , U1 > U1,2, U0 > U0,2]

(B.2)

Then we can rewrite Eq. (B.2) as

1Ā + 1τ2<t1τ1≥τ2

∫ 1

0

FΛ1(t)−Λ1(τ2)(− log(1− u1)− Λ1(τ2))dQ(U1 < u1|Gτ2 , U1 > U1,2, U0 > U0,2)

= 1Ā + 1τ2<t1τ1≥τ2

∫ 1

U1,2

FΛ1(t)−Λ1(τ2)(− log(1− u1)− Λ1(τ2))dQ(U1 < u1|Gτ2 , U1 > U1,2, U0 > U0,2)

(B.3)

The conditional distribution may be computed as follows. Denote

C1|0,2(u1;U2) := Q(U1 < u1|Gτ2 , U1 > U1,2, U0 > U0,2) (B.4)

Eq. (B.4) may be rewritten as

C1|0,2(u1;U2) = Q(U1 < u1|U2, U1 > U1,2, U0 > U0,2)

=
Q(U1 < u1, U1 > U1,2|U2, U0 > U0,2)

Q(U1 > U1,2|U2, U0 > U0,2)
(B.5)
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Notice that U2 is explicitly known once we condition on Gτ2 and is given by 1− exp(Λ2(τ2)).
Let us next express Eq. (B.5) in terms of the copula function. We start with the numerator,
which may be expressed as

Q(U1 < u1, U1 > U1,2|U2, U0 > U0,2) =
Q(U1 < u1, U1 > U1,2, U0 > U0,2|U2)

Q(U0 > U0,2|U2)

=
Q(U1 < u1, U0 > U0,2|U2)−Q(U1 < U1,2, U0 > U0,2|U2)

Q(U0 > U0,2|U2)

(B.6)

We have that

Q(U1 < u1, U0 > U0,2|U2) = Q(U1 < u1|U2)−Q(U1 < u1, U0 < U0,2|U2)

=
∂C1,2(u1, u2)

∂u2

∣∣∣∣
u2=U2

− ∂C(U0,2, u1, u2)

∂u2

∣∣∣∣
u2=U2

(B.7)

where C1,2 denotes the bivariate copula connecting the default times of names “1” and “2”,
while C denotes the trivariate copula. Similarly, we have that

Q(U1 < U1,2, U0 > U0,2|U2) =
∂C1,2(U1,2, u2)

∂u2

∣∣∣∣
u2=U2

− ∂C(U0,2, U1,2, u2)

∂u2

∣∣∣∣
u2=U2

(B.8)

The denominator in Eq. (B.5) may be computed as

Q(U1 > U1,2|U2, U0 > U0,2) =
Q(U1 > U1,2, U0 > U0,2|U2)

Q(U0 > U0,2|U2)
(B.9)

where

Q(U1 > U1,2, U0 > U0,2|U2) = Q(U0 > U0,2|U2)−Q(U0 > U0,2, U1 < U1,2|U2)

= 1− ∂C0,2(U0,2, u2)

∂u2

∣∣∣∣
u2=U2

− ∂C1,2(U1,2, u2)

∂u2

∣∣∣∣
u2=U2

+
∂C(U0,2, U1,2, u2)

∂u2

∣∣∣∣
u2=U2

(B.10)

All together, we have that

C1|0,2(u1;U2) =

∂C1,2(u1,u2)

∂u2

∣∣∣∣
u2=U2

− ∂C(U0,2,u1,u2)

∂u2

∣∣∣∣
u2=U2

− ∂C1,2(U1,2,u2)

∂u2

∣∣∣∣
u2=U2

+ ∂C(U0,2,U1,2,u2)

∂u2

∣∣∣∣
u2=U2

1− ∂C0,2(U0,2,u2)

∂u2

∣∣∣∣
u2=U2

− ∂C1,2(U1,2,u2)

∂u2

∣∣∣∣
u2=U2

+ ∂C(U0,2,U1,2,u2)

∂u2

∣∣∣∣
u2=U2

(B.11)

The case when the investor is the first to default is symmetric, leading to the conditional



D. Brigo and A. Capponi, Arbitrage free bilateral counterparty risk valuation and application to CDS 30

distribution given by

C1|2,0(u1;U0) := Q(U1 < u1|U2, {τ1 > τ0}, {τ2 > τ0})
= Q(U1 < u1|U0, U1 > U1,0, U0 > U2,0)

=

∂C0,1(u0,u1)

∂u0

∣∣∣∣
u0=U0

− ∂C(u0,u1,U2,0)

∂u0

∣∣∣∣
u0=U0

− ∂C0,1(u0,U1,0)

∂u0

∣∣∣∣
u0=U0

+ ∂C(u0,U1,0,U2,0)

∂u0

∣∣∣∣
u0=U0

1− ∂C0,2(u0,U2,0)

∂u0

∣∣∣∣
u0=U0

− ∂C0,1(u0,U1,0)

∂u0

∣∣∣∣
u0=U0

+ ∂C(u0,U1,0,U2,0)

∂u0

∣∣∣∣
u0=U0

(B.12)

and the survival probability conditioned on the information known at the investor default
time is given by

1A∪B1τ1>τ0Q(τ1 > t|Gτ0)

= 1τ0≤T1τ0≤τ2

(
1B̄ + 1τ0<t1τ1≥τ0

∫ 1

U1,0

FΛ1(t)−Λ1(τ0)(− log(1− u1)− Λ1(τ0))dC1|2,0(u1;U0)

)
(B.13)

where
B̄ = {t < τ0 < τ1} (B.14)
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[1] Assefa, S., Bielecki, T., Crépey, S., and Jeanblanc, M. (2009). CVA computation for
counterparty risk assesment in credit portfolio. Preprint.

[2] T. Bielecki, M. Jeanblanc and M. Rutkowski. Hedging of Credit Default Swaptions in a
Hazard Process Model. December 2008, Working paper, available at
http://www.defaultrisk.com/pp crdrv169.htm

[3] Blanchet-Scalliet, C., and Patras, F. (2008). Counterparty Risk Valuation for CDS. Avail-
able at defaultrisk.com

[4] Beumee, J., Brigo, D., Schiemert, D., and Stoyle, G. (2009). Charting a Course Through
the CDS Big Bang. Fitch Solutions research report.

[5] Brigo, D. Market Models for CDS Options and Callable Floaters, Risk, (2005), January
issue.

[6] D. Brigo. Counterparty Risk valuation with Stochastic Dynamical Models: Impact of
Volatilities and Correlations. 5-th World Business Strategies Fixed Income Conference,
Budapest, 26 Sept. 2008.

[7] D. Brigo and A. Alfonsi. Credit Default Swap Calibration and Derivatives Pricing with
the SSRD Stochastic Intensity Model, Finance and Stochastic, 9, , 29–42, 2005.

[8] D. Brigo, I. Bakkar. Accurate counterparty risk valuation for energy-commodities swaps.
Energy Risk. March 2009 issue.

http://www.defaultrisk.com/pp_crdrv169.htm


D. Brigo and A. Capponi, Arbitrage free bilateral counterparty risk valuation and application to CDS 31

[9] D. Brigo and N. El-Bachir. An exact formula for default swaptions’ pricing in the SSRJD
stochastic intensity model. Accepted for publication in Mathematical Finance, 2008

[10] D. Brigo and K. Chourdakis. Counterparty Risk for Credit Default Swaps: Impact of
spread volatility and default correlation, forthcoming in International Journal of Theo-
retical and Applied Finance, 2008.

[11] D. Brigo and M. Masetti. Risk Neutral Pricing of Counterparty Risk. In: Pykhtin, M.
(Editor), Counterparty Credit Risk Modeling: Risk Management, Pricing and Regula-
tion. Risk Books, 2005, London.

[12] D. Brigo, and F. Mercurio. Interest Rate Models: Theory and Practice - with Smile,
Inflation and Credit, Second Edition, Springer Verlag, 2006.

[13] D. Brigo and A. Pallavicini. Counterparty Risk under Correlation between Default and
Interest Rates. In: Miller, J., Edelman, D., and Appleby, J. (Editors). Numerical Methods
for Finance, Chapman Hall, 2007.

[14] D. Brigo, A. Pallavicini and V. Papatheodorou. Bilateral counterparty risk valuation
for Interest rate products: Impact of volatilities and correlations. Forthcoming at SSRN
and arXiv, 2009.

[15] D. Coculescu, H. Geman and M. Jeanblanc. Valuation of Default Sensitive Claims Under
Imperfect Information, Finance and Stochastics, 12 195-218, 2008

[16] P. Collin-Dufresne, R. Goldstein, and J. Hugonnier. A general formula for pricing de-
faultable securities. Econometrica 72, 1377–1407, 2004.

[17] J. Cox, J. Ingersoll, and S. Ross. A theory of the term structure of interest rates,
Econometrica 53, 385–408, 1985.

[18] K. Chourdakis. Option pricing using the fractional FFT, Journal of Computational
Finance, 8, 1–18, 2005.
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